
Is POS Tagging Necessary or Even Helpful for Neural
Dependency Parsing?

Houquan Zhou⋆, Yu Zhang⋆, Zhenghua Li, and Min Zhang

Institute of Artificial Intelligence, School of Computer Science and Technology,
Soochow University, Suzhou, China

hqzhou@stu.suda.edu.cn, yzhang.cs@foxmail.com,
{zhli13,minzhang}@suda.edu.cn

Abstract. In the pre deep learning era, part-of-speech tags have been consid-
ered as indispensable ingredients for feature engineering in dependency parsing.
But quite a few works focus on joint tagging and parsing models to avoid er-
ror propagation. In contrast, recent studies suggest that POS tagging becomes
much less important or even useless for neural parsing, especially when using
character-based word representations. Yet there are not enough investigations fo-
cusing on this issue, both empirically and linguistically. To answer this, we de-
sign and compare three typical multi-task learning framework, i.e., Share-Loose,
Share-Tight, and Stack, for joint tagging and parsing based on the state-of-the-art
biaffine parser. Considering that it is much cheaper to annotate POS tags than
parse trees, we also investigate the utilization of large-scale heterogeneous POS
tag data. We conduct experiments on both English and Chinese datasets, and the
results clearly show that POS tagging (both homogeneous and heterogeneous)
can still significantly improve parsing performance when using the Stack joint
framework. We conduct detailed analysis and gain more insights from the lin-
guistic aspect.

1 Introduction

Among different NLP tasks, syntactic parsing is the first to convert sequential utterances
into full tree structures. Due to its simplicity and multi-lingual applicability, dependency
parsing has attracted extensive research interest as a main-stream syntactic formalism
[21, 24], and been widely used in semantic parsing [7], information extraction [22],
machine translation [25], etc.

Given an input sentence S = w0w1 . . . wn, dependency parsing constructs a tree
T = {(h, d, l), 0 ≤ h ≤ n, 1 ≤ d ≤ n, l ∈ L}, as depicted in Figure 1, where (h, d, l)
is a dependency from the head wh to the dependent wd with the relation label l, and w0

is a pseudo root node.
In the pre deep learning (DL) era, part-of-speech (POS) tags are considered as indis-

pensable ingredients for feature engineering in dependency parsing. POS tags function
⋆ Houquan Zhou and Yu Zhang make equal contributions to this work. Zhenghua Li is the corre-

sponding author. This work was supported by National Natural Science Foundation of China
(Grant No. 61525205, 61876116) and a Project Funded by the Priority Academic Program
Development (PAPD) of Jiangsu Higher Education Institutions.



2 H. Zhou et al.

$ 中央台 驻 香港 记者 报道 。

CCTV in HK journalist reports .
CTB: NR VV NR NN VV PU

PKU: jn vt ns n vt w

nn
rcmod

dobj
nsubj

root

punct

Fig. 1: An example dependency tree with both homogeneous (CTB) and heterogeneous
(PKU) POS tags.

as word classes in the sense that the same POS tags usually play similar syntactic roles
in language utterances. For example, ordinary verbs are tagged as VV and ordinary
nouns as NN in Penn Chinese Treebank (CTB). Yet some tags are designed for serv-
ing other tasks such as information extraction. For instance, proper nouns and temporal
nouns are distinguished from NN as NR and NT respectively. In this sense, we refer to
tag pairs like {NN,VV} as syntax-sensitive and {NN,NR} as syntax-insensitive. Parsing
performance drops dramatically when removing POS-related features, since POS tags
play a key role in reducing the data sparseness problem of using pure word-based lexi-
cal features. Meanwhile, to alleviate error propagation in the first-tagging-then-parsing
pipeline, researchers propose to jointly model POS tagging and dependency parsing
under both graph-based [18] and transition-based [9] frameworks.

In the past five years, dependency parsing has achieved tremendous progress thanks
to the strong capability of deep neural networks in representing word and long-range
contexts [1, 2, 4, 6, 12, 28]. Yet all those works hold the assumption of POS tags being
important and concatenate word and POS tag embeddings as input.

Moreover, researchers show that using Character-level Long Short-term Memory
(CHARLSTM) based word representations is helpful for named entity recognition [15],
dependency parsing [5], and constituency parsing [13]. The idea is first to perform Long
Short-term Memory (LSTM) over word characters and then to add (or concatenate) to-
gether word embeddings and CHARLSTM word representations as model inputs. In
particular, Kitaev and Klein (2018) [13] show that with CHARLSTM word represen-
tations, POS tags are useless for constituency parsing. We believe the reason may be
two-fold. First, word embeddings, unlike lexical features, suffer from much less data
sparseness, since syntactically similar words can be associated via similar dense vec-
tors. Second, CHARLSTM word representation can effectively capture morphological
inflections by looking at lemma/prefix/suffix, which provide similar information as POS
tags. However, there still lacks a full and systematic study on the usefulness of POS tags
for dependency parsing.

In this work, we try to answer the question whether POS tagging is necessary or
even helpful for neural dependency parsing and make the following contributions1.

1 We release our code at https://github.com/Jacob-Zhou/stack-parser.



Is POS Tagging Necessary or Even Helpful for Neural Dependency Parsing? 3

• We design three typical multi-task learning (MTL) frameworks (i.e., Share-Loose,
Share-Tight, Stack), for joint POS tagging and dependency parsing based on the
state-of-the-art biaffine parser.

• Considering that there exist large-scale heterogeneous POS-tag data for Chinese
partly because it is much cheaper to annotate POS tags than parse trees, we also
investigate the helpfulness of such heterogeneous data, besides homogeneous POS-
tag data that are annotated together with parse trees.

• We conduct experiments on both English and Chinese benchmark datasets, and the
results show that POS tagging, both homogeneous and heterogeneous, can still sig-
nificantly improve parsing accuracy when using the Stack joint framework. Detailed
analysis sheds light on the reasons behind helpfulness of POS tagging.

2 Basic Tagging and Parsing Models

This section presents the basic POS tagging and dependency parsing models separately
in a pipeline architecture. In order to make fair comparison with the joint models, we
make the encoder-decoder architectures of the tagging and parsing models as similar
as possible. The input representation contains both word embeddings and CHARLSTM
word representations. The encoder part adopts three BiLSTM layers.

2.1 The Encoder Part

The input layer. Given a sentence S = w0w1 . . . wn, the input layer maps each word
wi into a dense vector xi.

xi = ewi ⊕ eci (1)

where ewi is the word embedding, eci is the CHARLSTM word representation vector,
and⊕means vector concatenation.2 CHARLSTM word representations eci are obtained
by applying BiLSTM to the word characters and concatenating the final hidden output
vectors. Following Dozat and Manning (2017) [4], the word embeddings ewi is the sum
of a fixed pretrained word embedding and a trainable word embedding initialized as
zero. Infrequent words in the training data (less than 2 times) are treated as a special
OOV-token to learn its embedding.

Under the pipeline framework, the parsing model may use extra POS tags as input.

xi = ewi ⊕ eci ⊕ epi ⊕ ep′i (2)

where epi and ep′i are the embeddings of the homogeneous and heterogeneous POS
tags, respectively. For dropouts, we follow Dozat and Manning (2017) [4] and drop the
different components of the input vector xi independently.

The BiLSTM encoder. We employ the same N = 3 BiLSTM layers over the input
layer to obtain context-aware word representations for both tagging and parsing. We fol-
low the dropout strategy of Dozat and Manning (2017) [4] and share the same dropout
masks at all time steps of the same unidirectional LSTM. The hidden outputs of the
top-layer BiLSTM are used as the encoded word representations, denoted as hi.

2 We have also tried the sum of ew
i and ec

i , leading to slightly inferior performance.



4 H. Zhou et al.

2.2 The Tagging Decoder

For the POS tagging task, we use two MLP layers to compute the score vector for
different tags and get the optimal tag via softmax. The first MLP layer uses leaky ReLU
[19] activation, while the second MLP layer is linear without activation. During training,
we take the local cross-entropy loss.

2.3 The Parsing Decoder

We adopt the state-of-the-art biaffine parser of Dozat and Manning (2017) [4]. We apply
an MLP layer with leaky ReLU activation to obtain the representations of each word as
a head (rhi ) and as a dependent (rdi ).

rhi ; r
d
i = MLP (hi) (3)

As discussed in Dozat and Manning (2017) [4], this MLP layer on the one hand reduces
the dimensionality of hi, and more importantly on the other hand strips away syntax-
unrelated information and thus avoids the risk of over-fitting.

Then a biaffine layer is used to compute scores of all dependencies.

score (i← j) =

[
rdi
1

]T
Wrhj (4)

where score (i← j) is the score of the dependency i ← j, and W is a weight ma-
trix. During training, supposing the gold-standard head of wi is wj , we use the cross-
entropy loss to maximize the probability of wj being the head against all words, i.e.,

escore(i←j)∑
0≤k≤n escore(i←k) .

For dependency labels, we use extra MLP and Biaffine layers to compute the scores
and also adopt cross-entropy classification loss. We omit the details due to space limi-
tation.

3 Joint Tagging and Parsing Models

The pipeline framework suffers from the error propagation problem, meaning that POS
tagging mistakes badly influence parsing performance. In the pre-DL era, researchers
propose joint tagging and parsing models under both graph-based and transition-based
parsing architectures [9, 18]. The key idea is to define the joint score of a tag sequence
and a parse tree and to find the optimal joint result in the enlarged search space. In
the neural network era, jointly modeling two tasks becomes much easier thanks to the
commonly used encoder-decoder architecture and the MTL framework.

In this work, we design and compare three typical MTL frameworks for joint POS
tagging and dependency parsing, i.e., Share-Loose, Share-Tight, and Stack, as illus-
trated in Figure 2. The Share-Loose and Share-Tight methods treat tagging and parsing
as two parallel tasks, whereas the Stack method consider parsing as the main task and
derive POS tag-related information as the inputs of the parsing component. For all joint
models, the inputs only include the word embeddings and CHARLSTM word represen-
tations, as shown in Equation 1.



Is POS Tagging Necessary or Even Helpful for Neural Dependency Parsing? 5

. . . xi . . . xj . . .

Share-Loose

BiLSTM 1

BiLSTM 3

BiLSTM 2

BiLSTM 1

BiLSTM 3

BiLSTM 2

MLPMLP

MLPMLPBiaffine

POS′POSDEP

. . . xi . . . xj . . .

Share-Tight

BiLSTM 1

BiLSTM 3

BiLSTM 2

MLPMLP

MLPMLPBiaffine

POS′POSDEP

. . . xi . . . xj . . .

Stack

BiLSTM× 3

BiLSTM× 3

MLP MLP

⊕

MLP

rp

MLPMLPBiaffine

POS′POSDEP

Fig. 2: The framework of three variants of the joint model.

Share-Loose. The tagging and parsing tasks use nearly separate networks, and only
share the word and char embeddings. To incorporate heterogeneous POS tagging data,
we add another scoring MLP at the top to compute scores of different heterogeneous
POS tags. Under such architecture, the loosely connected tagging and parsing compo-
nents can only influence each other in very limited manner.

Share-Tight. This is the most commonly used MTL framework, in which the tagging
and parsing components share not only the embeddings, but also the BiLSTM encoder.
Different decoders are then used for different tasks. In this tightly joint model, the tag-
ging and parsing components can interact with and mutually help each other to a large
extent. The shared parameters are trained to capture the commonalities of the two tasks.

Stack. The Stack takes BiLSTM hidden outputs of the tagger, denoted as rpi , as the ex-
tra input of the parser. In this way, the error propagation problem can be better handled.

xparse
i = xi ⊕ rpi (5)

The idea of the Stack joint method is mainly borrowed from Zhang and Weiss (2016)
[26]. They propose the stack-propagation approach to avoid using explicit POS tags in
dependency parsers. They employ the simple feed-forward networks for both tagging
and parsing [2]. Without BiLSTM encoders, they use the hidden outputs of a single-
layer MLP of the tagging component as extra inputs of the parsing component.

Training loss. During training, we directly add together all losses of different tasks,
i.e., the parsing loss, the homogeneous POS tagging loss, and the heterogeneous POS
tagging loss.

L = LDEP + LPOS + LPOS′ (6)



6 H. Zhou et al.

4 Experiments

In this section, we conduct experiments and detailed analysis to make full investigation
on the usefulness of POS tagging for dependency parsing.

4.1 Experimental Settings

Data. We conduct experiments on the English Penn Treebank (PTB), the Chinese
dataset at the CoNLL-2009 shared task (CoNLL09) [7], and the larger-scale Chinese
Penn Treebank 7 (CTB7). For PTB, we adopt the same settings such as data split and
Stanford dependencies of Chen and Manning (2014) [2]. We follow the official settings
for CoNLL09.

We use the Stanford Parser v3.0 to obtain Stanford dependencies for CTB7.3 For
Chinese, besides the homogeneous POS tags, we also incorporate the large-scale People
Daily corpus of Peking University (PKU) as heterogeneous POS tagging data.

Evaluation metrics. We use POS tagging accuracy (TA), unlabeled attachment score
(UAS), and labeled attachment scores (LAS) for dependency parsing. For UAS and
LAS computation, We follow Dozat and Manning (2017) [4] and ignore all punctuation
marks for PTB.

Hyper-parameters. We follow most hyper-parameter settings of Dozat and Manning
(2017) [4] for all our models. For CHARLSTM word representations, we set the di-
mension of the character embeddings to 50, and the dimension of CHARLSTM outputs
to 100. We train each model for at most 1,000 iterations, and stop training if the peak
performance on the dev data does not increase in 100 (50 for models with BERT) con-
secutive iterations.

4.2 Results on the Dev Data

Results of the pipeline framework. Table 1 shows the influence of using homoge-
neous and heterogeneous POS tags in the pipeline framework. More results are also
presented to understand the contributions of each of the four components in the input
layer. The homogeneous tagging accuracy is 97.58, 96.59, 96.72, 97.85, on the dev data
of PTB, CoNLL09, and CTB7, and PKU, respectively. We perform 5-fold jack-knifing
to obtain the automatic homogeneous POS tags on the training data to avoid closed
testing, and use a POS tagger trained on PKU data to produce heterogeneous POS tags
for sentences of CoNLL09 and CTB7.

The results of using only one component clearly show that lexical information (i.e.,
ew and ec) is most crucial for parsing, and only using POS tag embeddings leads to
very large accuracy drop.

When using two components at the same time, using CHARLSTM word represen-
tations (ec) is slightly yet consistently better than using POS tag embeddings (ep), both
substantially outperforming the model using only word embeddings (ew) by more than
0.5 on all three datasets.

3 https://nlp.stanford.edu/software/stanford-dependencies.shtml



Is POS Tagging Necessary or Even Helpful for Neural Dependency Parsing? 7

PTB CoNLL09 CTB7
ep 87.79 75.94 75.72
ew 93.42 85.30 84.43
ec 93.34 84.42 83.73
ew ⊕ ep 93.92 85.94 85.12
ew ⊕ ec 93.97 86.09 85.23
ew ⊕ ec ⊕ ep 93.88 86.17 85.32
ew ⊕ ec ⊕ ep ⊕ ep′ - 86.01 85.23

Table 1: Parsing performance (LAS) on dev
data under the pipeline framework.

PTB CoNLL09 CTB7

homo
Share-Loose 93.95 86.28 85.56
Share-Tight 93.93 86.17 85.56
Stack 94.09 86.26 85.79

hetero
Share-Loose - 86.05 85.62
Share-Tight - 86.25 85.76
Stack - 86.16 85.86

homo
+

hetero

Share-Loose - 86.30 85.57
Share-Tight - 86.62 85.86
Stack - 86.69 85.88

Table 2: Parsing performance (LAS) compar-
ison on dev data for the three joint methods.

Moreover, using three components leads to slight improvement on both CoNLL09
and CTB7, but hurts performance on PTB. Further using heterogeneous tag embeddings
slightly degrades the performance.

All those results indicate that under the pipeline framework, POS tags become un-
necessary and can be well replaced by the CHARLSTM word representations. We be-
lieve the reasons are two-fold. First, CHARLSTM can effectively capture morpholog-
ical inflections by looking at lemma/prefix/suffix, and thus plays a similar role as POS
tags in terms of alleviating the data sparseness problem of words. Second, the error
propagation issue makes predicted POS tags less reliable.

Results of the joint methods. Table 2 presents the results of the three joint tagging
and parsing methods without or with heterogeneous POS tagging.

When using only homogeneous POS tagging, we find that the performance gaps
between different joint methods are very small. The best joint methods outperform the
basic model by 0.1, 0.3, and 0.6 respectively. A similar situation arises when using
heterogeneous tagging only.

When using both homogeneous and heterogeneous tagging , aka (w/ hetero) setting,
we can see that the overall performance is further improved by large margin. The best
Stack method outperforms the basic model by 0.6 on CoNLL09 and 0.7 on CTB7,
showing that heterogeneous labeled data can inject useful knowledge into the model.

Overall, we can see that the Stack method is more stable and superior compared with
the other three methods, and is adopted for the following experiments and analysis.

4.3 Final Results on the Test Data

Table 3 shows the results on the test data. For the scenario of not using BERT, the
pipeline method using homogeneous POS tags is slightly yet consistently inferior to
the basic model. The Stack method using only homogeneous POS tags significantly
outperforms the basic method by 0.2 (p < 0.005), 0.4 (p < 0.0005), and 0.5 (p <
0.0005) in LAS on the three datasets respectively. Utilizing heterogeneous POS tags on



8 H. Zhou et al.

PTB CoNLL09 CTB7
TA UAS LAS TA UAS LAS TA UAS LAS

w/o BERT

Andor et al. (2016) [1] 97.44 94.61 92.79 - 84.72 80.85 - - -
Dozat and Manning (2017) [4] 97.3 95.74 94.08 - 88.90 85.38 - - -
Ji et al. (2019) [11] 97.3 95.97 94.31 - - - - - -
Li et al. (2019) [17] 97.3 95.93 94.19 - 88.77 85.58 - - -
Basic (ew ⊕ ec) 97.50 95.97 94.34 96.42 89.12 86.00 96.48 88.58 85.40
Pipeline (ew ⊕ ec ⊕ ep) 97.50 95.88 94.27 96.42 89.12 85.98 96.48 88.42 85.28
Stack 97.91 96.13 94.53 96.55 89.46 86.44 96.62 88.86 85.88
Stack w/ hetero - - - 96.66 89.85 86.85 96.72 89.26 86.27

w/ BERT

Li et al. (2019) [17] - 96.67 95.03 - 92.24 89.29 - - -
Basic (ew ⊕ ec) 97.42 96.85 95.14 97.29 92.21 89.42 97.22 91.66 88.75
Stack 97.57 96.85 95.25 97.36 92.44 89.68 97.32 91.67 88.84
Stack w/ hetero - - - 97.39 92.46 89.76 97.40 91.81 89.04

Table 3: Final results on the test data. It is noteworthy that we produce our experiments
with single run for each model on each dataset, since our preliminary experiments that
we train Stack w/ hetero and Basic on CTB7 for four times show the variance of perfor-
mances is small (σ2 < 0.01).

Chinese further boosts parsing performance, leading to large overall improvements of
0.9 (p < 0.0001) on both datasets.

When using BERT, parsing accuracy of the basic method increases by very large
margin. Compared with the stronger baseline, the improvement introduced by POS tag-
ging becomes smaller. Overall, using both homogeneous and heterogeneous POS tag-
ging, the Stack method significantly outperforms the basic method by 0.3 (p < 0.005)
on both CoNLL09 and CTB7.

For POS tagging, the trend of performance change is similar. First, the joint method
can also improve tagging accuracy, especially when with heterogeneous POS tagging.
Using Bert can substantially improve TA on both Chinese datasets. However, it is sur-
prising to see a slight decrease in TA when using BERT, which is possibly due to over-
fitting considering the TA is already very high on English.

We also list the results of recent previous works. We can see that our final joint
models achieve competitive parsing accuracy on PTB and CoNLL09 w/ or w/o BERT.

4.4 Detailed Analysis

In the following, we conduct detailed analysis on the CoNLL09 test data, in order to
understand or gain more insights on the interactions and mutual influence between POS
tagging and dependency parsing. For the joint method, we adopt the Stack model with
both homogeneous and heterogeneous POS tagging without using BERT, to jointly pro-
duce automatic POS tags and parse trees. For the pipeline method, we use the two basic
tagging and parsing models separately to produce automatic results.

Correlation of performance changes between tagging and parsing. Overall, the
joint method outperforms the pipeline method by 0.2 in TA, and 0.7/0.9 in UAS/LAS,



Is POS Tagging Necessary or Even Helpful for Neural Dependency Parsing? 9

NN VV PU AD NR P M JJ DEG DEC
−0.5

0

0.5

1

1.5

2

2.5

Pe
rf

or
m

an
ce

ch
an

ge
s

(%
)

Tagging Parsing

Fig. 3: Changes of tagging accuracy and parsing accuracy (LAS) on the CoNLL09 test
set for words of different POS tags. Words/arcs are categorized according to their/their
dependent’s gold-standard POS tags.

as shown in Table 3. To gain more insights, we categorize all words according to their
gold-standard POS tags and compare the accuracy changes for each set. Figure 3 shows
the most frequent tags. We can see that there is clear positive correlation of absolute
performance changes between tagging and parsing. For instance, as the most frequent
tags NN and VV, their tagging accuracy increases by 0.2 and 0.7, and parsing accuracy
increases by 0.7 and 1.4, respectively. The most notable exception is NR with opposite
changes in tagging and parsing accuracy (-0.6 vs. +1.3), which can be explained from
two aspects. First, we find that most of NR mistakes are due to the {NR, NN} ambiguous
pair, which is syntax-insensitive and thus has very small impact on parsing decisions.
Second, the Stack model may be more robust to tagging errors.

Overall, we conclude that tagging and parsing performance is highly correlated due
to the close relationship between the two tasks.

Influence of tagging errors on parsing. In the Stack method, the hidden represen-
tations from the tagging encoder is fed into the parsing encoder as extra inputs. We
would like to understand how tagging decisions influence parsing. Overall, UAS/LAS
are 90.42/88.38 for words getting correct POS tags, whereas 73.40/42.59 for wrongly
tagged words. We can observe dramatic drop of 17.0/45.8, indicating that POS tags has
much larger influence on LAS than UAS.

Looking deeper into this issue, Table 4 shows the parsing accuracy for words of
different POS tagging patterns. A tagging pattern X → Y represents the set of words
whose correct tag is X and are tagged as Y.

We can see that higher parsing accuracy are usually achieved by correct tagging
patterns X→ X than wrong pattern X→ NOT-X, except DEC→ DEG in UAS.4.

4 DEG and DEC are two tags for the frequently used auxiliary word “的” (dē, translated as “of”
or “that”) in Chinese. “的” is tagged as DEG in phrase “土地/land 的面积/area (area of the
land)”, while as DEC in “他/he提出/proposed的方法/method (method that he proposed)”.



10 H. Zhou et al.

UAS LAS UAS LAS
NN → NN 91.73 89.69 NR → NR 91.73 86.96

→ VV 67.25 44.98 → NN 86.39 83.67
→ NR 90.43 86.96 JJ → JJ 95.40 94.33
→ JJ 91.96 20.54 → NN 92.82 14.92

VV → VV 85.92 84.12 DEG → DEG 96.75 95.91
→ NN 65.60 40.07 → DEC 92.06 26.56
→ VA 84.75 83.05 DEC → DEC 94.28 92.39
→ AD 55.32 25.53 → DEG 96.88 22.22

Table 4: The impact of specific POS tagging error patterns on parsing.

The tagging ambiguites can be classified into three types. First, the syntax-sensitive
ambiguous pairs such as {NN, VV} and {VV, AD} lead to large performance decrease in
both UAS and LAS if wrongly tagged. Second, the syntax-insensitive ambiguous pairs
such as {NN, NR} and {VV, VA} have very small influence on parsing accuracy. Finally,
some ambiguous pairs only greatly influence LAS but have little effect on UAS, such
as {NN, JJ} and {DEC, DEG}.

5 Related Works

Previous studies [16, 20] show POS tags are indispensable ingredients for composing
different features in the traditional pre-DL dependency parsers [14, 27]. Meanwhile,
Li et al. (2011) [18] show that the error propagation problem introduced by predicted
POS tags degrades parsing accuracy by about 6 (UAS) on different Chinese datasets.
Therefore, researchers propose to jointly model the POS tagging and dependency tasks
in the graph-based [18] and transition-based [9] frameworks, leading to promising re-
sults. The key challenge is to define scoring functions on the joint results, and design
effective search algorithms to determine optimal joint answers in the enlarged search
space. Furthermore, joint models of word segmentation, POS tagging, and parsing are
also proposed [10].

In the DL era, joint modeling of multiple related tasks becomes much easier under
the MTL framework [3]. In fact, MTL has become an extensively used and powerful
technique for many problems. The basic idea is sharing the encoder part while using
separate decoders for different tasks. The major advantages of employing MTL are
two-fold, i.e., 1) exploiting the correlation and mutual helpfulness among related tasks,
and 2) making direct use of all (usually non-overlapping) labeled data of different tasks.
The Share-Light and Share-Tight methods are both typical MTL frameworks, and the
main difference lies in the amount of shared parameters. Actually, there are still many
other variants due to the flexibility of MTL. For example, Straka (2018) [23] stacks task-
specific private BiLSTMs over shared BiLSTMs for joint tagging and parsing. Based on
the current results, we expect that such variants may achieve very similar performance.

The Stack method is similar to the stack-propagation method of Zhang and Weiss
(2016) [26]. Their basic idea is to use the hidden outputs of the POS tagging compo-
nents as extra inputs of the parsing components, forming a stacked structure. During



Is POS Tagging Necessary or Even Helpful for Neural Dependency Parsing? 11

training, parsing loss is directly propagated into the full tagging component whereas
tagging loss only indirectly influences the parsing components via their shared parts.
Their pioneer work employ a simple feed-forward network for both tagging and pars-
ing [2], and only achieves an LAS of 91.41 on PTB. Another inspiring work related
with the Stack method is Hashimoto et al. (2017) [8], who propose to jointly train many
tasks of different complexity in a very deep and cascaded network architecture, where
higher levels are used for more complex tasks.

6 Conclusions

Unlike the findings in traditional pre-DL dependency parsing, recent studies indicate
that POS tagging becomes much less important and can be replaced by CHARLSTM
word representations in neural dependency parsers. However, there lacks a full and
systematic investigation on this interesting issue, from both empirical and linguistic
perspectives. In this paper, we try to investigate the role of POS tagging for neural
dependency parsing in both pipeline and joint frameworks. We design and compare
three typical joint methods based on the state-of-the-art biaffine parser. We try to ac-
commodate both homogeneous and heterogeneous POS tagging, considering it is much
cheaper to annotate POS tags than parse trees and there exist large-scale heterogeneous
POS tag datasets for Chinese. Based on the experiments and analysis on three English
and Chinese benchmark datasets, we can draw the following conclusions.

• For the pipeline method, both homogeneous and heterogeneous POS tags provide
little help to the basic parser with both word embeddings and CHARLSTM, due to
error propagation and the overlapping role in reducing data sparseness.

• The three joint methods investigated in this work perform better than the pipeline
method. Among them, the Stack is more stable and superior compared with the
other three, leading to significant improvement over the basic model on all datasets.

• POS tagging is still helpful for dependency parsing under the joint framework even
if the parser is enhanced with BERT, especially when with heterogeneous POS
tagging.

• Detailed analysis shows that POS tagging and dependency parsing are two closely
correlated tasks. In particular, If the joint model fails to resolve syntax-sensitive
POS tagging ambiguities, it usually makes wrong parsing decisions as well.

References

1. Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., Collins,
M.: Globally normalized transition-based neural networks. In: Proceedings of ACL (2016)

2. Chen, D., Manning, C.: A fast and accurate dependency parser using neural networks. In:
Proceedings of EMNLP (2014)

3. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural
networks with multitask learning. In: Proceedings of ICML (2008)

4. Dozat, T., Manning, C.D.: Deep biaffine attention for neural dependency parsing. In: Pro-
ceedings of ICLR (2017)



12 H. Zhou et al.

5. Dozat, T., Qi, P., Manning, C.D.: Stanford’s graph-based neural dependency parser at the
CoNLL 2017 shared task. In: Proceedings of CoNLL (2017)

6. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-based dependency
parsing with stack long short-term memory. In: Proceedings of ACL (2015)

7. Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martı́, M.A., Màrquez, L., Meyers,
A., Nivre, J., Padó, S., Štěpánek, J., Straňák, P., Surdeanu, M., Xue, N., Zhang, Y.: The
CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple languages. In:
Proceedings of CoNLL (2009)

8. Hashimoto, K., Xiong, C., Tsuruoka, Y., Socher, R.: A joint many-task model: Growing a
neural network for multiple NLP tasks. In: Proceedings of EMNLP (2017)

9. Hatori, J., Matsuzaki, T., Miyao, Y., Tsujii, J.: Incremental joint POS tagging and dependency
parsing in Chinese. In: Proceedings of IJCNLP (2011)

10. Hatori, J., Matsuzaki, T., Miyao, Y., Tsujii, J.: Incremental joint approach to word segmen-
tation, POS tagging, and dependency parsing in Chinese. In: Proceedings of ACL (2012)

11. Ji, T., Wu, Y., Lan, M.: Graph-based dependency parsing with graph neural networks. In:
Proceedings of ACL (2019)

12. Kiperwasser, E., Goldberg, Y.: Simple and accurate dependency parsing using bidirectional
LSTM feature representations. Transactions of ACL (2016)

13. Kitaev, N., Klein, D.: Constituency parsing with a self-attentive encoder. In: Proceedings of
ACL (2018)

14. Koo, T., Collins, M.: Efficient third-order dependency parsers. In: ACL (2010)
15. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures

for named entity recognition. In: Proceedings of NAACL (2016)
16. Lei, T., Xin, Y., Zhang, Y., Barzilay, R., Jaakkola, T.: Low-rank tensors for scoring depen-

dency structures. In: Proceedings of ACL (2014)
17. Li, Y., Li, Z., Zhang, M., Wang, R., Li, S., Si, L.: Self-attentive biaffine dependency parsing.

In: Proceedings of IJCAI (2019)
18. Li, Z., Zhang, M., Che, W., Liu, T., Chen, W., Li, H.: Joint models for Chinese POS tagging

and dependency parsing. In: Proceedings of EMNLP (2011)
19. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acous-

tic models. In: Proceedings of ICML. p. 3 (2013)
20. McDonald, R., Petrov, S., Hall, K.: Multi-source transfer of delexicalized dependency

parsers. In: Proceedings of EMNLP (2011)
21. Nivre, J., de Marneffe, M.C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C.D., McDonald,

R., Petrov, S., Pyysalo, S., Silveira, N., Tsarfaty, R., Zeman, D.: Universal dependencies v1:
A multilingual treebank collection. In: Proceedings of LREC (2016)

22. Roller, S., Kiela, D., Nickel, M.: Hearst patterns revisited: Automatic hypernym detection
from large text corpora. In: Proceedings of ACL (2018)

23. Straka, M.: UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In: Proceedings of
CoNLL (2018)

24. Zeman, D., Hajič, J., Popel, M., Potthast, M., Straka, M., Ginter, F., Nivre, J., Petrov, S.:
CoNLL 2018 shared task: Multilingual parsing from raw text to universal dependencies. In:
Proceedings of CoNLL (2018)

25. Zhang, M., Li, Z., Fu, G., Zhang, M.: Syntax-enhanced neural machine translation with
syntax-aware word representations. In: Proceedings of NAACL (2019)

26. Zhang, Y., Weiss, D.: Stack-propagation: Improved representation learning for syntax. In:
Proceedings of ACL (2016)

27. Zhang, Y., Nivre, J.: Transition-based dependency parsing with rich non-local features. In:
Proceedings of ACL (2011)

28. Zhou, H., Zhang, Y., Huang, S., Chen, J.: A neural probabilistic structured-prediction model
for transition-based dependency parsing. In: Proceedings of ACL (2015)


